Near Optimal Sensor Selection in the COlumbia RIvEr (CORIE) Observation Network for Data Assimilation Using Genetic Algorithms

نویسندگان

  • Xuan Thanh Dang
  • Sergey Frolov
  • Nirupama Bulusu
  • Wu-chi Feng
  • António M. Baptista
چکیده

CORIE is a pilot environmental observation and forecasting system (EOFS) for the Columbia River. The goal of CORIE is to characterize and predict complex circulation and mixing processes in a system encompassing the lower river, the estuary, and the near-ocean using a multi-scale data assimilation model. The challenge for scientists is to maintain the accuracy of their modeling system while minimizing resource usage. In this paper, we first propose a metric for characterizing the error in the CORIE data assimilation model and study the impact of the number of sensors on the error reduction. Second, we propose a genetic algorithm to compute the optimal configuration of sensors that reduces the number of sensors to the minimum required while maintaining a similar level of error in the data assimilation model. We verify the results of our algorithm with 30 runs of the data assimilation model. Each run uses data collected and estimated over a two-day period. We can reduce the sensing resource usage by 26.5% while achieving comparable error in data assimilation. As a result, we can potentially save 40 thousand dollars in initial expenses and 10 thousand dollars in maintenance expense per year. This algorithm can be used to guide operation of the existing observation network, as well as to guide deployment of future sensor stations. The novelty of our approach is that our problem formulation of network configuration is influenced by the data assimilation framework which is more meaningful to domain scientists, rather than using abstract sensing

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks

Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...

متن کامل

Optimizing fixed observational assets in a coastal observatory

Proliferation of coastal observatories necessitates an objective approach to managing of observational assets. In this article, we used our experience in the coastal observatory for the Columbia River estuary and plume to identify and address common problems in managing of fixed observational assets, such as salinity, temperature, and water level sensors attached to pilings and moorings. Specif...

متن کامل

Intrusion Detection in Wireless Sensor Networks using Genetic Algorithm

Wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. Routing attacks on the networks, where a malicious node from sending data to the base station is perceived. In this article, a method that can be used to transfer the data securely to prevent attacks...

متن کامل

Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms

Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...

متن کامل

Parameterized Novelty Detectors for Environmental Sensor Monitoring

As part of an environmental observation and forecasting system, sensors deployed in the Columbia RIver Estuary (CORIE) gather information on physical dynamics and changes in estuary habitat. Of these, salinity sensors are particularly susceptible to biofouling, which gradually degrades sensor response and corrupts critical data. Automatic fault detectors have the capability to identify bio-foul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007